§39.2013 - (1) Be capable of discharging cargo vapor at the maximum transfer rate plus the vapor growth for the cargo such that the pressure in the vapor space of each tank connected to the vapor control system (VCS) does not exceed— - (i) The maximum design working pressure for the tank; or - (ii) If a spill valve or rupture disk is fitted, the pressure at which the device operates; - (2) Relieve at a pressure corresponding to a pressure in the cargo tank vapor space not less than 1.0 pounds per square inch gauge (psig); - (3) Prevent a vacuum, which generates in any tank connected to the vapor collection system during the withdrawal of cargo or vapor at maximum rates, in a cargo tank vapor space from exceeding the maximum design vacuum; and - (4) Not relieve at a vacuum corresponding to a vacuum in the cargo tank vapor space between 14.7 pounds per square inch absolute (psia) (0 psig) and 14.2 psia (-0.5 psig). - (b) Each pressure-vacuum relief valve must— - (1) Be of a type approved under 46 CFR 162.017, for the pressure and vacuum relief setting desired; - (2) Be tested for venting capacity in accordance with paragraph 1.5.1.3 of API 2000 (incorporated by reference, see 46 CFR 39.1005). The test must be carried out with a flame screen fitted at the vacuum relief opening and at the discharge opening if the pressure-vacuum relief valve is not designed to ensure a minimum vapor discharge velocity of 30 meters (98.4 feet) per second; and - (3) If installed after July 23, 1991, have a mechanism to check that it operates freely and does not remain in the open position. - (c) A liquid filled pressure-vacuum breaker may be used for vapor overpressure and vacuum protection if the vessel owner or operator obtains the prior written approval of the Commandant. - (d) Vapor growth must be calculated following the Marine Safety Center guidelines available in Coast Guard VCS guidance at http://home-port.uscg.mil, or as specifically ap- proved in writing by the Commandant after consultation with the Marine Safety Center. ## \$39.2013 High and low vapor pressure protection for tankships—T/ALL. Each tankship with a vapor collection system must be fitted with a pressure-sensing device, located as close as practicable to the vessel vapor connection, that measures the pressure in the main vapor collection line, which— - (a) Has a pressure indicator located on the tankship where the cargo transfer is controlled; and - (b) Has a high-pressure and a low-pressure alarm that— - (1) Gives an audible and a visible warning on the vessel where the cargo transfer is controlled; - (2) Activates an alarm when the pressure-sensing device measures a high pressure of not more than 90 percent of the lowest pressure relief valve setting in the cargo tank venting system; and - (3) Activates an alarm when the pressure-sensing device measures a low pressure of not less than 0.144 pounds per square inch gauge (psig) for an inerted tankship, or the lowest vacuum relief valve setting in the cargo tank venting system for a non-inerted tankship. ## § 39.2014 Polymerizing cargoes safety—TB/ALL. - (a) Common vapor headers for polymerizing cargoes must be constructed with adequate means to permit internal examination of vent headers. - (b) Vapor piping systems and pressure-vacuum valves that are used for polymerizing cargoes must be inspected internally at least annually. - (c) Pressure-vacuum valves and spill valves which are used for polymerizing cargoes must be tested for proper movement prior to each transfer. ## § 39.2015 Tank barge pressure-vacuum indicating device—B/ALL. A fixed pressure-sensing device must be installed as close as practicable to the vessel vapor connection on a tank barge with a vapor collection system. The pressure-sensing device must measure the pressure vacuum in the main vapor collection line and have a